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Introduction

The marine green microalga Tetraselmis subcordiformis has 
been shown to accumulate a substantial amount of starch 
under different stress conditions [33–35]; thus, this microalga 
is considered to be a potential sustainable feedstock for the 
large-scale production of fuel ethanol. Until now, however, 
optimization for both high biomass productivity and high 
starch content in algal cells has been proven to be difficult 
[24]. In order to improve algal starch productivity, it would be 
of great benefit to develop genetic strategies to increase starch 
accumulation without hampering algal growth [23]. The basis 
for the genetic strategies is the understanding of biological 
functions, especially on the protein and enzyme levels.

The study of protein–protein interaction (PPI) networks 
is currently one of the most active fields because it is a 
useful tool to investigate functional information in a wide 
range of biological processes, for instance, transcriptional 
activation/repression, signal transduction and metabolic 
regulation [21]. High-throughput screening methods for 
PPIs, including the yeast two-hybrid system and affinity 
capture mass spectrometry, are relatively time-consuming 
and costly. As alternatives, several computational methods 
based on gene-neighbourhoods, gene fusion, phylogeny, 
docking, co-expression or interologs were developed to 
predict PPIs [21]. Of these methods, the interolog approach 
has been widely used for PPI prediction in several organ-
isms [11–13, 16]. This approach is based on the idea that 
orthologs are likely to share common functions, including 
PPIs, in a target organism and the model organisms for 
which experimental PPI information is available [31]. The 
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software InParanoid [22] can accurately identify orthologs 
in different species. There are several publicly accessible 
databases from which PPI information can be retrieved, 
including DIP [32], MINT [6] and BioGRID [5].

Although T. subcordiformis is a non-model organism 
whose entire genome has not been sequenced, its transcrip-
tome and proteome at different growth stages have already 
been obtained. From the protein sequences, a reliable PPI 
network will be constructed for T. subcordiformis and key 
components in the regulation of starch metabolism in this 
alga will be identified, which will potentially provide tar-
gets for genetic manipulations on the strain through rational 
designs to improve starch accumulation.

Materials and methods

The marine green microalga T. subcordiformis FACHB-1751 
was isolated from the Huanghai Sea near Dalian, Liaoning 
Province, P.R. China and maintained by the Freshwater Algae 
Culture Collection of the Institute of Hydrobiology (FACHB-
collection), Chinese Academy of Sciences. The medium and 
photobioreactors for T. subcordiformis cultivation were the 
same as that in the Yao’s publication [35]. Aeration was kept 
at 0.4 vvm with 3 % CO2 enriched air and the temperature 
was maintained at 25 ± 2 °C; cool white fluorescent lamps 
provided an average irradiance of 200 μmol m−2 s−1. First, 
T. subcordiformis cells cultivated in a medium full of nitrogen 
and sulphur were harvested from the late exponential phase. 
Then, the T. subcordiformis cells were resuspended in three 
media (full of N and S, depleted S or depleted N) with an ini-
tial cell density of 1.5 × 106 cells mL−1. Algal samples were 
taken from the three media after 12, 24, and 48 h.

Constructing protein datasets of T. subcordiformis based 
on transcriptome

The transcriptome database of T. subcordiformis was 
obtained from GenBank (http://www.ncbi.nlm.nih.gov/gen-
bank/, accession number: PRJNA203523/GANN01000000). 
Protein sequences were first aligned by BLAST to protein 
databases (e-value  <  1e−5), including the nr nucleotide 
database of the National Center for Biotechnology Infor-
mation (NCBI, http://www.ncbi.nlm.nih.gov/), the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, http://www.
genome.jp/kegg/) and Swiss-Prot terms (http://www.uniprot.
org/downloads); the proteins with the highest sequence simi-
larity with the given sequences were retrieved along with 
the functional annotations of these proteins. Gene Ontol-
ogy (GO, http://geneontology.org) functional annotation was 
obtained with nr annotation by the Blast2GO program [8].

Total protein extraction, LC–MS/MS analysis and 
data analysis were performed according to the published 

protocol with minor modifications [3, 20, 30]. A brief pro-
cedure is as follows: firstly, the algal cells from different 
cultural conditions were lysed ultrasonically in lysis buffer. 
Then the protein samples were digested by lysine C. The 
protein digests were labelled by light, medium, heavy 
dimethylation reagents on column, then the product was 
separated by SCX and RPLC in tandem. Eluted peptides 
were analysed with the LTQ-Orbitrap mass spectrometer 
equipped with a nano-spray source. Secondly, all acquired 
files were searched against the transcriptome database of T. 
subcordiformis. Protein quantification was performed using 
a dimethyl-adapted version of MSQuant (v2.0a81). The 
quantified proteins were normalised against the log2 of the 
median ratio of all peptides quantified. For detailed infor-
mation, please see Electronic Supplementary Material 1.

Protein–protein interactome construction

The complete proteome sets of 12 model organisms (Arabi-
dopsis thaliana, Caenorhabditis elegans, Drosophila mela-
nogaster, Escherichia coli, Homo sapiens, Mus musculus, 
Rattus norvegicus, Saccharomyces cerevisiae, Schizosac-
charomyces pombe, Zea mays, Triticum aestivum and Syn-
echocystis sp. PCC 6803) were downloaded from UniProt 
(http://www.uniprot.org/downloads) and Ensembl (http://w
ww.ensembl.org). Then, protein sequences from T. subcor-
diformis were aligned to the proteome data of each model 
organisms using InParanoid 4.1 to identify ortholog pairs. 
The block substitution matrix (BLOSSUM) was set to 62 
for the perl script of InParanoid.

The interactome data of model organisms were collected 
from the BioGRID database (February 25th, 2013 release, 
http://thebiogrid.org/download.php) and the DIP database 
(August 18th, 2012 release http://dip.doe-mbi.ucla.edu/
dip/). The PPIs for starch metabolism in maize and wheat 
were extracted from publications [14, 28, 29].

Orthologous proteins of T. subcordiformis that were 
identified by InParanoid were mapped onto the interactome 
data from the corresponding model organisms. The confi-
dence value (CV) is the most direct parameter for evalu-
ating the credibility of predicted interactions [11, 16], and 
CV can be calculated according to the following formula: 
CV = N × E × S, where N the total number of publications 
in which the same interaction appeared; E the total num-
ber of experimental methods by which the same interaction 
was predicted; and S the number of reference species from 
which the same interaction was recorded.

Protein family (PFAM) domains annotation and enrichment 
analysis

The domain annotation for the orthologs of T. subcordi-
formis was performed by multiple sequence alignments and 
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the hidden Markov models based on the Pfam-A database 
(http://pfam.sanger.ac.uk/) [25]. Interactions between the 
domains in Pfam-A (iPfam) were also downloaded from 
the FTP site of PFAM (July 29th, 2013 release ver 27.0). 
We then counted the number of predicted PPIs associated 
with domain interaction pairs based on the iPfam database. 
For enrichment analysis, we also constructed the full set of 
pairwise PPIs using all the nodes and then calculated how 
many of the generated pairs could be associated with the 
iPfam database. Finally, a hypergeometric distribution was 
utilised to calculate the P value:

where N is the number of all protein pairs constructed by 
pairing all the nodes; n is the number of predicted PPIs; M 
is the number of all protein pairs that are associated with 
iPfam; and m is the number of predicted PPIs that are asso-
ciated with iPfam.

Subcellular location prediction and enrichment analysis

The subcellular localisation of each protein was predicted 
by Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-
multi/) [7] based on its amino acid sequence. This predictor 
for plant protein samples covers the following 12 subcellu-
lar compartments: cell wall, chloroplast, cytoplasm, endo-
plasmic reticulum, extracellular, Golgi apparatus, mito-
chondrion, nucleus, peroxisome, cell membrane, plastid, 
and vacuole.

A randomisation algorithm, which is described in detail 
by Gandhi et al. [10], was used to determine the statistical 
significance of the enrichment of the interactions in differ-
ent categories. The self-interacting proteins were deleted 
in this analysis to avoid spurious enrichment. The follow-
ing equation was used to calculate the observed number of 
interologs where one protein is in compartment α (ciα) and 
its pair in β (cjβ). If these two proteins interact, eij = 1; oth-
erwise, eij = 0:

The probability distribution for the ensemble of random 
networks maintained the protein annotation, the degree (k) 
of each protein and the total number of interacting pairs 
(E). The n̄αβ was given by:

The P value for the observed number of interologs nαβ 
was calculated by a Poisson distribution:

p = 1 −

m−1
∑
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(

M
i

)
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)
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Finally, the P values were applied to a multiple-testing 
correction P (multi) = 1 − (1 − P)m, where P is the single-
test P value. For enrichment, m equals the number of αβ 
pairs with at least one edge in the observed network. For 
depletion, m equals the number of αβ pairs possible in the 
ensemble of random networks.

Topology analysis of PPI network

The Cytoscape [26, 27] plugin NetworkAnalyzer was uti-
lised to compute specific parameters that describe the net-
work topology, including the distribution of node degrees, 
average clustering coefficients, and the shortest path 
lengths. The plugin Randomnetworks which creates ran-
dom networks according to three main models (Erdos–
Renyi, Watts-Strogatz, Barabasi–Albert) was used to 
randomise the predicted PPI network and generate 50 ran-
domised network by the degree preserving random shuffle 
algorithm. For more information, please visit the following 
website: http://chianti.ucsd.edu/svn/csplugins/trunk/soc/pj
mcswee/src/cytoscape/randomnetwork/.

Results and discussion

Predicted PPIs in T. subcordiformis

Based on the proteomic analysis, a total of 2,627 protein 
sequences were finally identified from the algal cells with 
the transcriptome of T. subcordiformis (26,428 protein cod-
ing sequences) as the protein dataset. To construct a map of 
the PPI networks, first, orthologous proteins were located 
from the 2,627 sequences. At the end, 1,182 sequences 
(45 % from the T. subcordiformis proteome and 3 % from 
the T. subcordiformis transcriptome) were determined to 
have orthologs that scored 100 % and matched at least one 
protein from the reference organisms. Then, the orthology 
results were used to replace the proteins that interacted with 
each other in the reference species with the corresponding 
T. subcordiformis proteins. Finally, 12,887 original inter-
actions constructed by 938 algal proteins were identified 
(Table S1). Then, a total of 7,773 unduplicated PPIs (Table 
S2) were filtered out from the original 12,887 PPIs, because 
some of them may have been predicted several times by 
different methods, in different organisms and/or of different 
publications. The functional annotation of the 938 nodes 
is presented in Table S3. A total of 444 nodes received 
one or more hits from three ontologies (molecular func-
tion, cellular component and biological process) of the GO 
annotation; 767 nodes obtained K numbers and functional 

P(nαβ) =

{

∑nαβ

j=0 n̄i
αβ exp(−n̄αβ)/j! nαβ < n̄αβ (depletion)

∑

∞

j=nαβ
n̄i
αβ exp(−n̄αβ)/j! nαβ � n̄αβ (enrichment)
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annotation from KEGG. Then, based on the interactome 
of the source species, the interaction map was constructed 
with 938 proteins and 7,773 PPIs; the Cytoscape visualisa-
tion of the map is shown in Fig. 1a.

Validation of the predicted PPI interactions

The CV was calculated for all 7,773 PPIs, which were then 
divided into three different groups (Fig.  1b): 290 high-
confidence interactions (CV  >  10), 1,253 medium-confi-
dence interactions (CV = 2–10) and 6,230 low-confidence 
interactions (CV = 1). Generally, PPIs with a medium- or 
high-CV are much more credible than low-CV PPIs as they 
are predicted using various experimental methods, species 
and/or publications. The PPIs with a low CV are likely to 
include more false positives, although PPIs with a low CV 

could be considered more reliable if additional experimen-
tal proof becomes available in the future. The 20 PPIs with 
the highest CV are presented in Table 1. Most of the reli-
able interactions are highly conserved among eukaryotes 
and involve proteins with critical functions, such as ubiq-
uitin-related proteins, proteasome complexes, translation-
related protein complexes.

Two different methods were introduced in this study to 
evaluate the global quality of the predicted interactome of 
T. subcordiformis indirectly. First it is known that protein 
interactions are mediated through the interaction domains 
[4]. The interaction information between domains can be 
utilised either to predict PPIs between proteins [4, 21] or to 
validate the constructed PPI network [13]. In this study, the 
annotations based on the Pfam-A database indicated that 
892 nodes involved in the interactome of T. subcordiformis 

Fig. 1   The predicted protein–protein interaction network of T. sub-
cordiformis. a The overall view of the PPI network. b Confidence 
values of the predicted PPIs. c Subcellular localisation prediction 
of the nodes. (The node colour is based on KEGG molecular func-
tions: red cellular processes, yellow environmental information pro-

cessing, green metabolism, blue genetic information processing, pink 
nodes related to multifunction, and grey function unknown. The edge 
colour is based on the CV: black low-confidence interactions, green 
medium-confidence interactions, and red high-confidence interac-
tions)
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presented different domains (Table S4). These proteins 
formed 7,353 non-self PPI pairs in the predicted PPI net-
work of T. subcordiformis; of these, 283 were associated 
with Pfam-A interacting domain pairs. In contrast, the full 
set of 397,386 non-self protein pairs were constructed by 
892 nodes, and 4,512 PPIs of these were associated with 
Pfam-A interacting domain pairs. This result demon-
strates that domain-associated interactions are significantly 
enriched in the predicted PPI network of T. subcordiformis 
(the hypergeometric P value <0.001).

Second, enrichment analysis of the subcellular locations 
was used to analyse the credibility of the PPIs [11]. With 
the help of the Plant-mPLoc server, the proteins in the PPI 
network were categorised into different subcellular loca-
tions, as presented in Fig.  1c. We therefore examined the 
PPIs for enrichment or depletion in the predicted subcellu-
lar compartment to validate this trend. In addition, several 
multi-located protein complexes, such as the proteasome 
and ribosome, were manually extracted as independent cat-
egories for the P value calculation. Most of the statistically 
significant enriched compartment pairs were those paired 
with the same categories, as shown in Fig. 2. Furthermore, 
interactions between two functionally related groups (e.g. 
mitochondrial and F-type ATPase) are also significantly 
enriched. Other interactions that are enriched across sub-
cellular compartments (e.g. endoplasmic reticulum–mito-
chondrion, endoplasmic reticulum–Golgi, mitochondrion–
chloroplast and Golgi–nucleus) indicate that some proteins, 

such as regulatory factors, were localised to more than one 
compartment.

Topology of the predicted PPI network  
of T. subcordiformis

As for complex biological networks, the topological and 
dynamic properties control the behaviour of the cell. It is 
important to analyse the topology of the network since the 
network construction disclose the intrinsic and/or potential 
capacity of the organisms and is a prerequisite for the study 
of dynamic network evolution [1, 9]. Basic network meas-
ures to characterise different complex networks include 
degree, degree distribution, clustering coefficient and short-
est path. For a PPI network, the number of connections of a 
node is called its degree (k) [13]. For the PPI network of T. 
subcordiformis, the value of kav is 16, which indicates that 
one protein interacts with other 16 proteins on average. In 
a scale-free network, the degree distribution of the nodes 
follows a power law, i.e. P(k) ~ k−γ. The network of T. sub-
cordiformis is characterised by a power law with γ = 1.4 
(R2 = 0.82), as shown in Fig. 3a.

The nodes of the PPI network were divided into free 
ends (111 proteins with single interactions), pipes (80 pro-
teins with two interactions) and other hubs (747 proteins 
with three to more than 100 interactions), as described 
in Fig.  3b. The highly connected nodes (the so-called 
hubs) ensure the topological integrity of the network. 

Table 1   Twenty most conserved protein interactions

Interactor A Annotation Interactor B Annotation CV

Unigene471 Translation termination factor eRF3 Unigene471 Translation termination factor eRF3 240

Unigene17188 Ubiquitin-conjugating enzyme E2 variant Unigene30310 Ubiquitin-conjugating enzyme E2 N 210

Unigene16115 26S proteasome regulatory subunit N11 Unigene5018 26S proteasome regulatory subunit N8 200

Unigene35173 Cofilin Unigene5852 Actin beta/gamma 1 170

Unigene11774 26S proteasome regulatory subunit N1 Unigene15788 26S proteasome regulatory subunit T2 168

Unigene13200 Profilin Unigene5852 Actin beta/gamma 1 168

Unigene11774 26S proteasome regulatory subunit N1 Unigene16115 26S proteasome regulatory subunit N11 150

Unigene4701 E3 ubiquitin-protein ligase HERC4 Unigene5193 GTP-binding nuclear protein Ran 144

Unigene16326 Translation initiation factor eIF-3 subunit 4 Unigene5144 Translation initiation factor eIF-3 subunit 2 130

Unigene8137 Glutathione S-transferase Unigene8137 Glutathione S-transferase 128

Unigene11569 26S proteasome regulatory subunit T5 Unigene16115 26S proteasome regulatory subunit N11 120

Unigene12261 26S proteasome regulatory subunit T1 Unigene16115 26S proteasome regulatory subunit N11 120

Unigene11569 26S proteasome regulatory subunit T5 Unigene4533 26S proteasome regulatory subunit T3 110

Unigene16115 26S proteasome regulatory subunit N11 Unigene4296 26S proteasome regulatory subunit N5 108

Unigene11774 26S proteasome regulatory subunit N1 Unigene16359 UV excision repair protein RAD23 104

Unigene15442 Translation initiation factor eIF-3 subunit 9 Unigene5144 Translation initiation factor eIF-3 subunit 2 102

Unigene17201 Histone H2A Unigene18499 Histone H2A 100

Unigene16115 26S proteasome regulatory subunit N11 Unigene750 26S proteasome regulatory subunit N3 96

Unigene16115 26S proteasome regulatory subunit N11 Unigene9395 26S proteasome regulatory subunit N6 90

Unigene10615 20S proteasome subunit alpha 1 Unigene7939 20S proteasome subunit alpha 7 88
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Genome-wide studies demonstrated that knocking out the 
hub genes appears to confer a greater rate of lethality than 
knocking out other genes, known as the centrality–lethality 
rule [17]. Table 2 lists the 20 most highly connected pro-
tein interaction hubs, including subunits of the proteasome, 
ribosomal proteins, and heat shock protein. Mapping the 
biological function of these based on the dataset of KEGG 
revealed that most of the nodes are involved in important 
genetic information processing and cellular processes.

We calculated the shortest path and the diameter of the 
PPI network of T. subcordiformis; the results demonstrate 
that the average path length is 2.9 and that the lengths of 
99 % of the paths are less than 6 (a ‘small word’ property), 
as presented in Fig. 3c. The clustering coefficient of a node 
in a network is a measure of the inter-connectivity between 
its neighbours. The mean clustering coefficient of the PPI 
network of T. subcordiformis is 0.20, as shown in Fig. 3d. 

The average clustering coefficient of 50 randomised PPI 
networks generated by the plugin Randomnetworks is 
0.11  ±  0.005. Compared with randomised networks, the 
predicted PPI network shows a higher clustering coefficient 
among the nodes, indicating that the predicted PPI network 
is densely connected.

Starch metabolism related PPI subnetworks

For T. subcordiformis, nutrient stress has been the tradi-
tional method for increasing cellular starch accumulation 
[35]. However, the stress factors are harmful to the algae, 
decreasing the growth rate simultaneously. Compared 
with nutrient manipulation approaches, genetic engineer-
ing results in an increasingly reproducible and predict-
able system [2]. Identifying functional regulatory factors 
involved in starch metabolism through the analysis the PPI 

Fig. 2   Enrichment analy-
ses of PPIs with subcellular 
localisation. The numbers in the 
matrix are compartment pairs, 
whose colour demonstrates the 
fold enrichment or depletion 
compared with an ensemble of 
random networks, as indicated 
in the figure. (Cell W cell wall, 
Cell M cell membrane, Chlo 
chloroplast, Cyto cytoplasm, 
ER endoplasmic reticulum, 
Extr extracellular, Glog Golgi 
apparatus, Mito mitochondrion, 
Nucl nucleus, Pero peroxisome, 
Vacu vacuole)

Fig. 3   Topological parameters 
of the PPI network of T. subcor-
diformis. a Distribution of the 
number of degrees of nodes in 
the PPI network with both axes 
plotted on logarithmic scales. b 
Different types of protein nodes 
classified based on their degree. 
c The shortest path length distri-
bution. d Clustering coefficient 
of the nodes
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subnetwork would provide the potential genetic targets to 
improve starch accumulation in T. subcordiformis.

The starch metabolism related subnetwork was con-
structed from the PPIs for which at least one node was 
annotated as a starch and sucrose metabolism pathway 
(map00500 in KEGG, the partial map is presented in 
Fig. 4a) according to the K numbers of the nodes, as pre-
sented in Fig. 4b. Besides, evidence has been reported that 
higher plants contain multienzyme complexes comprising 
starch synthase (SS), 1,4-alpha-glucan branching enzyme 
(SBE) and other enzymes [14, 28, 29]. Starch biosynthe-
sis is accomplished largely by the coordinated actions 
of these enzymes; however, the PPI datasets did not have 
such information. As a result, published studies about these 
complexes were mined to identify the PPIs; meanwhile, 
the protein sequences involved in the starch metabolism 
of these two organisms were downloaded from UniProt. 
Then, the proteome of T. subcordiformis was searched for 
orthologs. With these results, the different isoforms of SS, 
SBE and both subunits of ADP-glucose pyrophosphory-
lase (AGPase) were mapped into the subnetworks. As pre-
sented in Fig. 4b, UDP-glucose-6-dehydrogenase (UGDH), 
4-alpha-glucanotransferase (malQ), glucokinase (GLK) 
and SS IV form homo- or heteropolymers separately. Other 
enzymes and their neighbours form a more complex sub-
network, with trehalose-phosphate synthase (TPS), starch 
phosphorylase (PYG), UTP-glucose-1-phosphate uri-
dylyltransferase (UGP2), phosphoglucomutase (PGM), 

glucose-6-phosphate isomerase (GPI) and SBE as hubs. 
These predicted results were supplemented by the data in 
higher plants, where multienzyme complexes mainly com-
prise SS and SBE. TPS is a core hub in this subnetwork 
because it possesses the most neighbours and connects to 
other hubs to maintain the integrity of the network. Perhaps 
the reason for this partially lies in the product of TPS, tre-
halose, which serves as a signalling molecule to regulate 
carbohydrate metabolism in plants.

Since protein kinases and phosphatases are critical 
for regulating starch-synthesising enzymes [18], protein 
kinase- and phosphatase-related subnetworks were com-
posed from the PPIs for which at least one node was func-
tionally annotated as a kinase or protein phosphatase, as 
shown in Fig.  4c, d, respectively. Eleven types of protein 
kinases were predicted to be involved in 216 interactions, 
and eight types of protein phosphatases were predicted to 
interact with 176 proteins in the PPI subnetworks of T. sub-
cordiformis. In our PPI network, PGM is demonstrated to 
interact with protein phosphatase 2 (PP, 2) (Fig.  4d). The 
most connected hub TPS in Fig.  4b is regulated by sev-
eral types of kinases, including cGMP-dependent protein 
kinase (PKG), extracellular signal-regulated kinase (ERK) 
and cycling-dependent kinase 1 (CDK1) (Fig.  4c). UGP2 
interacts with the catalytic subunit of protein phosphatase 1 
(PP1, C) (Fig. 4d).

In maize and wheat, the stability of an enzyme com-
plex involved in starch metabolism depends on the 

Table 2   Twenty most highly 
connected protein interaction 
hubs

a  Annotation for biological 
function of each node is based 
on the KEGG PATHWAY 
(http://www.genome.jp/kegg-
bin/get_htext?br08901.keg) 
representing the knowledge 
on the molecular interaction 
and reaction networks for: 
cellular processes (C), genetic 
information processing (G), 
environmental information 
processing (E), and metabolism 
(M)

ID Edges Annotation Biological 
functiona

Unigene16115 330 26S proteasome regulatory subunit N11 G

Unigene11774 195 26S proteasome regulatory subunit N1 G

Unigene11569 165 26S proteasome regulatory subunit T5 G

Unigene17242 158 Small ubiquitin-related modifier G

Unigene26714 143 Molecular chaperone HtpG E, G

Unigene5852 102 Actin beta/gamma 1 C, E

Unigene4401 95 Histone H3 G

Unigene12160 91 Far upstream element-binding protein G

Unigene8197 89 – Unknown

Unigene12522 83 Rab family, other G

Unigene3106 78 Protein phosphatase 1, catalytic subunit C, E, G

Unigene15155 75 Small subunit ribosomal protein S3e G

Unigene1711 75 Threonine synthase M

Unigene30314 74 Small subunit ribosomal protein S8e G

Unigene18499 73 Histone H2A G

Unigene497 70 Cell division protease FtsH G

Unigene11994 69 Histone acetyltransferase MYST1 G

Unigene8825 68 Heat shock 70 kDa protein 1/8 C, E, G

Unigene8952 68 Large subunit ribosomal protein L3e G

Unigene2206 66 Small subunit ribosomal protein S5e G

http://www.genome.jp/kegg-bin/get_htext?br08901.keg
http://www.genome.jp/kegg-bin/get_htext?br08901.keg
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phosphorylation status of the constituent proteins [15, 29]. 
However, the kinase and the corresponding target protein 
are still unknown. In starch metabolism, a dynamic media-
tory role between starch synthesis and degradation has 
been ascribed to PYG, which is also an important hub in 
the predicted PPI subnetwork for starch metabolism. This 
enzyme interacts with the enzymes that catalyse starch 
anabolism and other enzymes involved in the relevant up- 
or down-stream reactions. The subnetwork of T. subcor-
diformis presented in Fig.  4c, d suggest that PP1, C and 
CDK 1 may be responsible for the dephosphorylation and 
phosphorylation of PYG, respectively. Meanwhile, PYG is 
also an important component of the protein complexes in 
starch metabolism, as shown in Fig. 4b. It is assumed that 
the phosphorylation status of PYG would influence the 
catalytic activity or the stability of the enzyme complexes. 

The subnetwork analysis suggested that two enzymes 
involving in starch metabolism, TPS and PYG may be the 
potential ideal genetic engineering targets for optimising 
starch accumulation in T. subcordiformis. There has been 
experimental evidence supporting this prediction. In C. 
reinhardtii, quantitative proteomics results indicated that 
PYG was the most significantly up-regulated enzyme in 
starch metabolism when the ammonium in the culture was 
generally exhausted [19]. For T. subcordiformis, three uni-
genes were annotated to different isoforms of PYG, among 
which Unigene12096 was predicted to have PPI partners as 
presented in Table S1. The expression level of PYG was 4- 
to 10-fold higher when placed in N-depleted medium: three 
isoforms of PYG were all significantly up-regulated at 24 h 
(data not shown), namely at the moment when T. subcordi-
formis cells possessed a maximum starch productivity [35]. 

Fig. 4   PPI subnetworks involved in starch metabolism and phospho-
rylation modification. a Starch metabolism pathway based on KEGG 
PATHWAY (map00500) information. b The subnetworks were con-
structed using proteins involved in starch metabolism. c, d The sub-
networks were constructed using interactions that involve proteins 
with kinases and protein phosphatases and their interacting neigh-

bours, respectively. [The black nodes represent enzymes involved in 
starch metabolism in Fig. 4a, kinases in Fig. 4c, protein phosphatases 
in Fig. 4d. The nodes connected with lilac and bold edges represent 
the PPI pairs predicted from maize (Z. mays) and wheat (T. aestivum) 
though literature mining. The other colours of the nodes and edges 
have the same meaning as in Fig. 1]
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As a result, further experimental investigations to prove 
this presumption are planned and are expected to provide 
a better understanding of the role of starch phosphorylase 
and trehalose-phosphate synthase in the regulation of starch 
biosynthesis.

Conclusions

Deep analysis of regulatory mechanism of starch metabo-
lism in T. subcordiformis is an example to utilise the PPI 
network. In addition, this first PPI map for a marine micro-
alga will be a powerful tool for predicting the biological 
functions of unknown genes and discovering the essential 
regulatory proteins in various metabolic reactions. This 
map could provide more information about the utilisation 
of eukaryotic algae for producing renewable biofuels.
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